On linear subspaces of nilpotent elements in a Lie algebra

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Algebra: Invariant Subspaces

Introduction 1 1. Invariant Subspaces 3 2. Eigenvectors, Eigenvalues and Eigenspaces 11 3. Cyclic Spaces 14 4. Prime and Primary Vectors 15 5. The Cyclic Decomposition Theorem 20 6. Rational and Jordan Canonical Forms 22 7. Similarity 23 8. The Cayley-Hamilton Polynomial (Or: Up With Determinants?) 24 9. Extending The Ground Field 25 9.1. Some Invariances Under Base Extension 25 9.2. Semisimpli...

متن کامل

Lie Algebra Prederivations and Strongly Nilpotent Lie Algebras

We study Lie algebra prederivations. A Lie algebra admitting a non-singular prederivation is nilpotent. We classify filiform Lie algebras admitting a non-singular prederivation but no non-singular derivation. We prove that any 4-step nilpotent Lie algebra admits a non-singular prederivation.

متن کامل

Principal nilpotent pairs in a semisimple Lie algebra

This is the first of a series of papers devoted to certain pairs of commuting nilpotent elements in a semisimple Lie algebra that enjoy quite remarkable properties and which are expected to play a major role in Representation theory. The properties of these pairs and their role is similar to those of the principal nilpotents. To any principal nilpotent pair we associate a two-parameter analogue...

متن کامل

On dimensions of derived algebra and central factor of a Lie algebra

Some Lie algebra analogues of Schur's theorem and its converses are presented. As a result, it is shown that for a capable Lie algebra L we always have dim L=Z(L) 2(dim(L2))2. We also give give some examples sup- porting our results.

متن کامل

The centralisers of nilpotent elements in the classical Lie algebras

The definition of index goes back to Dixmier [3, 11.1.6]. This notion is important in Representation Theory and also in Invariant Theory. By Rosenlicht’s theorem [12], generic orbits of an arbitrary action of a linear algebraic group on an irreducible algebraic variety are separated by rational invariants; in particular, ind g = tr.degK(g). The index of a reductive algebra equals its rank. Comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1998

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(98)10010-1